On the Estimation of Integrated Covariance Matrices of High Dimensional Diffusion Processes
نویسنده
چکیده
We consider the estimation of integrated covariance matrices of high dimensional diffusion processes by using high frequency data. We start by studying the most commonly used estimator, the realized covariance matrix (RCV). We show that in the high dimensional case when the dimension p and the observation frequency n grow in the same rate, the limiting empirical spectral distribution of RCV depends on the covolatility processes not only through the underlying integrated covariance matrix Sigma, but also on how the covolatility processes vary in time. In particular, for two high dimensional diffusion processes with the same integrated covariance matrix, the empirical spectral distributions of their RCVs can be very different. Hence in terms of making inference about the spectrum of the integrated covariance matrix, the RCV is in general not a good proxy to rely on in the high dimensional case. We then propose an alternative estimator, the time-variation adjusted realized covariance matrix (TVARCV), for a class of diffusion processes. We show that the limiting empirical spectral distribution of our proposed estimator TVARCV does depend solely on that of Sigma through a Marcenko-Pastur equation, and hence the TVARCV can be used to recover the empirical spectral distribution of Sigma by inverting the Marcenko-Pastur equation, which can then be applied to further applications such as portfolio allocation, risk management, etc.. Based on joint work with Yingying Li.
منابع مشابه
Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملRegularized Estimation of High-dimensional Covariance Matrices
Regularized Estimation of High-dimensional Covariance Matrices
متن کاملRate Optimal Estimation for High Dimensional Spatial Covariance Matrices
Spatial covariance matrix estimation is of great significance in many applications in climatology, econometrics and many other fields with complex data structures involving spatial dependencies. High dimensionality brings new challenges to this problem, and no theoretical optimal estimator has been proved for the spatial high-dimensional covariance matrix. Over the past decade, the method of re...
متن کاملEstimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation
This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کامل